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In the limit as the volume grows and the temperature vanishes, it is shown that 
the one-dimensional nearest neighbor ferromagnetic Ising model presents a 
sharp transition between two different regimes. Fluctuations are studied in one 
of these regimes and also in the critical case. 
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1. I N T R O D U C T I O N  

We show in this pape r  tha t  the very simple one-d imens iona l  nearest  
ne ighbor  fe r romagnet ic  Ising mode l  presents  a sharp  t rans i t ion  between 
two different regimes if one considers  the l imit  in which the volume grows 
to infinity and  the t empera tu re  vanishes s imultaneously.  The t rans i t ion  
occurs  with respect  to a p a r a m e t e r  which defines the re la t ionship  between 
he vo lume and the tempera ture .  

O u r  mo t iva t i on  for consider ing such a subject  comes from two 
sources. One  is the fact tha t  a s imilar  p h e n o m e n o n  seems to occur  in the 
much  more  e l abora t e  mode l  known  as b o o t s t r a p  perco la t ion  on the square 
lat t ice Z2. ~ F o r  this mode l  if one lets the l inear  size on the system L 
grow to infinity as the pa rame te r  p (the init ial  densi ty)  goes to zero, 
keeping a re la t ion  of  the type 

L = exp(~/p)  

then the a sympto t i c  behav ior  has been p roven  to be different in the cases 
< ea and  ~ > ~2, where 0 < e l  < ~2 < oo are fixed constants .  In  fact, one 
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expects a sharp threshold for e, separating the two regimes. One may argue 
that this soprt of transition may have some physical significance yielding 
an apparent critical point at finite volume which varies slowly with L. This 
in part may explain why for other related models simulations have 
indicated the presence of nontrivial critical points at infinite volume, 
contrary to rigorous results (see refs. 3, 7, and 8 and references given 
therein). 

Another source of motivation is the research on metastability for Ising 
models with Glauber-type dynamics, in the limit as the temperature goes to 
zero. In ref. 5 this problem was investigated in the two-dimensional case for 
fixed volume. Related questions may be raised in the limit as the volume 
grows to infinity and the temperature vanishes. Here we start investigating 
this limit for the simpler one-dimensional Ising model in equilibrium. We 
consider a chain of N spins a = (al . . . . .  0"N) taking values - 1 or + 1 and 
interacting via the energy (free boundary conditions) 

N 1  

H N ( a ) =  --(1/2) ~ aia,+ 1 
i = 1  

The corresponding Gibbs measure at inverse temperature fl is given by 

#(a) = Z  l exp{--flHN(a)} 

where 

Z = ~ exp{ - - f lHu(a)}  
a ~ { - - 1 , + l }  N 

As is well known, this probability distribution corresponds to a Markov 
chain indexed by the sites 1,..., N, with transition probabilities given by 

~(eri+, = - 1 / a i =  - 1 ) =  1 - p  

P(ai+l = + l / a i =  - 1 ) = p  

#(cri+l = - 1 / a i =  + l ) = p  

#(ai+~= + t / a i =  + l ) = 2 - p  

where 

exp(-fl)  
P -  1 + exp(-/~) 

The first spin, al, takes the values + 1 or - 1  with equal probabilities 1/2. 



1D Caricature of Phase Transition 243 

We are interested in the limit when fl --+ oc and N is taken as 

N = N(fl)  = [-exp(efl)] 

(where [ .  ] denotes the integer part and c~ > 0), which goes also to infinity. 
This means we are considering the asymptotic behavior of large systems at 
low temperature. 

Let 
1 N 

t 

be the average spin. The symbol 6a will denote the measure concentrated 
on the number a, while ~D will denote convergence in distribution. 

1 1 P r o p o s i t i o n  1. (a) I f 0 < ~ <  1, then m ' - - ~ D ~ 6 _ l §  . 

(b) If ct> 1, then m ~ o  60 . 

Hence, there is a sharp threshold at ~ = 1. In order to describe what 
happens at the critical value ~ =  1, we need some definitions first. Let 
X~,..., X~ be k independent random variables uniformly distributed between 
0 and 1. Let Y~,..., Y~ be their order statistics, i.e., 

and 

Y~= min{X~: l=  1,..., k }  

Y~ = min { X~: l = 1 ..... k, X~ > Y~ 1 }, r = 2 ..... k 

Define the probability distributions #k, k- -  1, 2 ..... on ~ by 

. . . .  

+ ( - - l ) k - 1 ( Y ~  - Y~-I) § ( -  l)k(] - Y~)<.x) 
+ . . .  

+ ( _  1)~(y~_ yk-  1) + ( _  l)k+i(1 _ yk)<~X ) 

For each k, #k is clearly concentrated on I - l ,  + l ]  and absolutely 
continuous with respect to the Lebesgue measure. 

P r o p o s i t i o n  2. If ct= l, then 

e-1 
D ~=1 k!'1"tk m , e -1 ( � 89189  k - -  

Notice that in this case the limiting distribution has a discrete and an 
absolutely continuous part. 
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Part (b) of Proposition 1 suggests one should study the fluctuations of 
m around zero, in the limit. These fluctuations turn out to be normally 
distributed if m is properly rescaled. N(O, 1) below denotes the standard 
normal distribution. 

Proposi t ion  3. If ~ >  1, then 

mN1/2{1/2a D N(O, 1) 

Note that the exponent 1 / 2 - 1 / 2 a  is close to 0 for a close to 1 and 
approaches the classical value 1/2 as a --+ m. As stated in Proposition 2, at 
a = 1 the fluctuations are already present without rescaling and they are 
not normally distributed. 

The proof of part (a) of Proposition 1 is trivial, since in the case 
0 < ~ < 1 the probability that all spins have the same sign converges to one. 
Part (b) of Proposition 1 and Proposition 3 follow from the fact that if 
a >  1, the number of boundaries between + 1 and - 1  spins grows to 
infinity, so that m is the average over many blocks of spins with opposite 
signs. We will prove Proposition 3 in Section 3. Part (b) of Proposition 1 is 
then a corollary. If ~ = 1, the number of boundaries between spins + 1 and 
- 1  converges to a Poisson distribution, the positions of the boundaries 
being distributed as the order statistics described above. This is the reason 
for the behavior described in Proposition 2. The technical details are left to 
Section 2. 

2. P R O O F  OF P R O P O S I T I O N  2 

F o r i = l  ..... N - l ,  set 

Hi : (TiCTi+ 1 

The random variables t/i are independent, with a common distribution 
given by 

e ( t h =  - l ) - - p - -  1 - P ( ~ h - -  +1) 

Let K be the number of indices i for which ~/i = -1 .  Then K is the number 
of successes in N -  1 trials, each one with probability p of success. There- 
fore, since a = 1, 

lira P(K=k)=e 1/k! (2.1) 
fl~oo 

for k = 0 ,  1, 2,.... For  fixed fl, conditioned on { K = k } ,  the k indices i: 
I~k< I~k < . - - <  L~g for which ~/i = - 1  have their joint distribution given 
by the following construction: Take d~k uniformly from the set of indices 
{1 ..... N - 1 } .  Then take J~k uniformly from remaining set of indices, 
excluding J~k. Proceed in this fashion by taking J~k uniformly from the 
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remaining indices after excluding J~k,..., J~k 1. Once we have J~k,'", J~k, the 
random variables I ~  < I~k < . . .  < I~k rare their order statistics, i.e., 

I ~  = rain { J~k" l =  1 ..... k } 

I~k = min { J~k' l =  1,..., k, J~k > I~k '  } 

It is also easy to see that  for x e ~ and k = 1, 2 ..... 

P ( m ~ x l K = k )  

for r=2, . . . ,  k 

= � 8 9  11 12 1 [( ~ k ) -  (~k - - I~k )  + (I~k --I~k) . . . .  

+ ( - - 1 )  x l ( I ~ k - - I ~ l ) + ( - - 1 ) k ( N - - I ~ k ) ] ~ < X )  

+ l p ( u - l [ _ ( i ~ k ) + ( i ~ k  l 3 2 Ipk ) -- (I~k -- I~k ) + ...  

+ ( _ 1)k(i~k _ IXZ; 1) + ( _ 1)k + l(U__ I~k)] ~< x) 

= �89 ..... I~k/U ) <<. x)  

1 1 I~k/U ) x)  + ~P(gk(Izk/N,  .... <~ 
where 

f k ( a l , . . . , a k ) = a l - - ( a Z - - a l ) +  .. .  + ( _ l ) k - l ( a ~ _ a k - 1 ) + ( - - 1 ) k ( 1 - - a k  ) 

and 

gk(a 1 ..... a k )=  --al + ( a 2 - - a l )  . . . .  + ( - - 1 ) k ( a k - - a  k 1 ) + ( - - 1 ) k + l ( 1 - - a k )  

AS fl ~ ~ ,  the joint  distribution of (I~k/N,..., I~k/N ) converges to that  of 
(Y~,..., Y~) defined in the introduction. Since fk and g~ are continuous 
functions from ~k to ~, we have 

lim P ( m < ~ x I K = k ) =  �89 ..... Y~)<<.x)+ �89 ..... Y~)<  x)  
f l  ~ o ~  

(2.2) 

Now, using (2.1), (2.2), and Proposit ion 18, Section 11-4, p. 232, of ref. 6, 
we obtain 

lim P(m <,% x)  
f l ~  

= lim ~ P ( m < ~ x l K = k )  P ( K = k )  
f l  ~ OO k = 0 

e 1 1 1  = 

1 1 1 1 k + (e / k . ) { ~ P ( f ~ ( Y  k ..... Y~)-<: 1 1 ~<x)} ..~ x)  + ~P(gk( Yk ..... Yk) 
k = l  

as we wanted to show. 
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3. P R O O F  OF P R O P O S I T I O N  3 

For  convenience, we will embed the N spins in a semi-infinite M a r k o v  
chain 0"1, 0" 2 . . . .  with 

P(ai= - 1 ) = P ( 0 " , =  + 1 ) =  1/2 

and the same transit ion matr ix  ment ioned in the introduction.  We look to 
the blocks of  spins + 1 and the blocks of  spins - 1. As in the last section, 
set qi = ai0.i+ i and define 

11 = min{i  = 1, 2,...: qi = - 1  } 

i k = m i n { i = l ,  2 , . . . : q , = _ l , i > i  k 1}, k = 2 , 3  .... 

X1 and Y1 will denote  respectively the lengths of  the l th blocks of spins + 1 
and of spins - 1 .  This means  that  on the event {0.1 = +1 } we set 

and on the event 
above. Let also 

X 1 = 11 

X1 = 12t - 1 - 121- 2x, l = 2, 3,.. 

Yt = IZl--I2t-- i ,  l = 1, 2, 3,... 

{0.1 = - 1  } we interchange the definitions of Xt and Yt 

Zt  = Xt + Yt 

be the length of  t h e / t h  pair  of  blocks of  spins + 1 and - 1. Fo r  fixed fl the 
r a n d o m  variables X1, X2,... and Y1, Y2 .... are all mutual ly  independent  and 
have the c o m m o n  geometr ic  distr ibution 

We set 

p ( X ; = k ) = p ( y l = k ) = ( l _ p ) k  lp, k = l ,  2 .... 

lo = N/E(Z1) = (p/2 ) N ~  (1/2) exp{(~ - 1)fl} 

where R( - )  denotes expectat ion and A,-~B means  that  the ratio A/B 
approaches  1 as fl ~ oo. N o w  we define 

/0 

S o = Z  Z,  
l = 1  

Observe that  E(No)= N. We will show that  

5:~~  o ,  D 
N1/2+,/2 a , N(O, 1) (3A) 
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and we will finish the proof of Proposition 3 later by showing that 

I Z L 1 0 " i - -  z N o 1  O'i] D 
NU2 + 1/2~ ~ ~5o (3.2) 

To prove (3.1), we write 

NO lo 
a i =  ~ ( X , - Y , )  (3.3t 

i = l  1=1 

and use a central limit theorem for triangular arrays from ref. 4 
(Theorem 1, Section 49, p. 283). There is a minor technical detail we have 
to note: we are letting the continuous parameter fl go to infinity, while the 
theorem we want to apply is stated for a discrete parameter. This is easy 
to overcome by observing that we can in fact consider that we are taking 
a generic sequence {fli} of values of fl such that fli--+ oe as i--+ oe. With this 
in mind and using (3.3), we write 

~#l = (Xl -- Yl)/NIl2 + 1/2~, 

and 

,0 

/=1 i 1 

Theorem 1, p. 283 of ref. 4 states that (3.1 follows once we show that: 

(i) 

(ii) 
dependent on ft. 

(iii) var(r goes to zero 
variance. 

( i v )  /oE(~/~I) ~ 0 as fl ~ ~ .  

(v) For  every ~ >0 ,  

The variables ~z have finite variances. 

The variances of the sums ~ are bounded by a constant C not 

as f l ~  o% where Var(.)  denotes the 

(vi) 

lo f x2 d p ( ~ I -  E ( ~ I ) ~  X) "-'~0 
Ixl ~ 

For every r > O, 

a s  ~ ----~ oo 

lof x2dp(~a1-E(~al)<~x)~ 1 
x] <7: 

a s  fl ---+ oo 
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Condi t ions  ( i~( i i i )  are the condit ions for the r a n d o m  variables {r 
to form an "e lementary  system" in the te rminology of ref. 4 (see Section 47, 
p. 278). Condi t ions  (ii i)-(vi) are simpler than the corresponding statements 
in ref. 4 because in our  case we have t ranslat ion invariance for each 
f ixed/L 

Condi t ions  (i)-(iii) are clearly true since 

V a r ( X t ) + V a r ( Y l )  2(1 - p )  2 
Var(r = N 1 + 1/~ p2N1 + 1/~, e~(~- x) 

and 

Var((~)  = 10 V a r ( ~ l )  ~ 1 

Condi t ion (iv) is trivial since by symmet ry  E ( ( ~ I ) =  A0. To  prove (v), 
we write 

I x2dp((t31-E(~,)<~x)<~ ~ { r ( j +  1)}2P(/X1 - Ytl/Na/2+a/z>j'c) 
x[> ' c  j = l  

But 

N o w  

Hence,  for large fl, 

P(IX~ - YII/N t/2+ 1/2= > j r )  

<~ 2P(X+ > jzN 1/2 + 1/2~ ) 

= 2(1 - p) j'rN t/2+ 1/2~, 

~< 2 exp(j 'zN m +  1/2~,p) 

note that  N1/R+l/2Vp~exp{fl(o~--l)/2}, which diverges as f l -- ,ov.  

r := exp( - -z 'N 1/2+ L/2,p) < 1 

and then 

f xadp(~l -E(~a)<~x)<~2 ~ {'c(J+l)}]2ri~Cr 
Ix[ > ' r  j = l  

where C is a finite constant  which does not  depend on fl, for large ft. F r o m  
the above we see that  

fl xZdP(~'~-E(~)<~x) 
x I > ' r  

goes to zero as fl ~ oo faster than  any exponential  of fl, while lo goes to 
infinity as the exponential  e (~ *)~. This implies that  (v) is satisfied. 
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Condition (vi) follows from (v) and the fact that 

lo f x 2 dP(~al - E(~I) > x) 

= loE(~pl )2 

= l o {E(X ,  )2 + E( Y1 )2  __ 2E(Xa) E( Y1 ) } N - ~  - 1/or 

1 - p  
= lo (2 --)-7---) N 1 1/:' ~ 1 

and 

We turn now to the proof of (3.2). First, we note that by defining 

(~, = { X,  + Y , -  E( X,) - E(Y,)  } IN ~/2 + ~/2~ 

to 

/ = l  

D '  N(0 ,  1) as fl --* oo 

one can prove as above that 

No - N 
N1/2 + 1/2~ - (,6 

But N 1/2 + 1/2~ ~ exp { fl(l + c~)/2 }, so that for every 6 > 0, 

Set 

and consider the sites 

N-- Iexp {(~--~ + ~) fl}] 

A = N - ? r  

B = N + N  
Now 

N No ) ( I E i = l  a i - E e = l  ail 
e \  -N~-~ I- ~ > ~ 

~< ( 'No-- N[ > exp { ( ~ - ~  + 6) fl}) 

max m a x  
\ j  = A,..., N) N 1/2 ~- 1/2~ \ j  = N,..., B) [ N 1/2 + I/2c, I 

(3.4) 

(3.5) 
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The last two terms are obviously identical. We will control the latter one. 
First we introduce blocks of spin + 1 and - 1 in thne same fashion as we 
did before, but this time starting from the site N and going to the right. 

Let Ut be the length of the lth block of + 1 spins and V1 be the length 
of the lth block of - 1  spins. Set also 

K =  max{l: (U1 + V1) + (U  2 + V2) + .-- + (UI+ Vl) < N} 

and 

Then 

( ~'iJ=N0"~ > 8 )  
P _ max \j= N,...,B m ~-T~ I ~  

<~ P(K> k) + P ( max 
\s= 1,...,k 

P ( max 
i= 1,....k + 1 

N1/~1/2=' > 8/2) 

) I N1/2 + 1/2~ > e/2 (3.6) 

To control the first term on the rhs of (3.6), we observe that 

Z~=l {(u,+ v,)-  E(u,+ vi)} 
kE(U1 + V1) 

D)(~ 0 (3.7) 

To prove (3.7), one can show the stronger statement 

Z~=~ {(u,+ V,)-E(Ui+ V,)} ~, 
21/2exp{[(a+3)/4+a]fl } , N(0, 1) as fl--.  oo (3.8) 

(3.8) can be proven by the same method used to prove (3.1). It implies 
(3.7) because 

k(E(U, + V1))~exp {(-~-~-+ 23) fl} (3.9) 

and (~+ 1)/2> ( e+  +3)/4, Now using (3.7) and (3.9), we have 

limsupP(K>k)~limsupP (Ui+ Vi) < N  = 0  
f l ~  fl~oo i 

(3.10) 
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The second term on the rhs of (3.6) can be controled using Kolmogorov's 
inequality (see ref. 4, Section 34, p. 213): 

\~= 1,...,k ~V -i/7-7 ;75-2 >e/2 ~<4 ~2NI+1/~ 

which vanishes as fl ~ ~ ,  provided we have chosen 

0 < 6 <  (3.12) 
4 

Finally, the last two terms on the rhs of (3.6) are identical and are easily 
controlled: 

( P m a x  N t / 2  + t/2~ > 
i= l,...,k + 1 

<~kP ( r r  .-. e ]k]_1/Z_bl/2~ 

= k(1 -- p) E(~/21N~,'2+ t,'2q 

~< exp { ( ~ - ~  + 2@ fl} exp ( - p  [2 exp {~ 3(c~ + 1 ) t ] )  (3.13) 

which vanishes as fl ~ oc. 
Now it is easy to see 

(3.10)-(3.13). 
that (3.2) follows from (3.4)-(3.6) and 
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